3D dif fractive lenses to overcome the 3D Abbe subwavelengt
【2】V. Pacheco-Pea, M. Beruete, I. V. Minin, O. V. Minin. Terajets produced by dielectric cuboids. Applied Physics Letters, 2014, 105(8): 084102
【18】Z. Zhou, Q. Tan, and G. Jin, Chin. Opt. Lett. 7, 938 (2009).
【15】J. M. Rodriguez, H. Carrasco, and H. D. Hristov, in Proceedings of APS/URSI Conference 169 (2013).
【2】N. Davidson and N. Bokor, Opt. Lett. 29, 1318 (2004).
责任编辑:刘盛龄
【7】S. S. Stafeev, L. O''Faolain, M. I. Shanina, V. V. Kotlyar, and V. A. Soifer, Comput. Opt. 35, 460 (2011) (in Russian).
引用该论文
【9】O. V. Minin and I. V. Minin, Dif fractional Optics of Millimeter Waves (IOP Publisher, Boston, 2004).
【1】R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
所属栏目:Digital holography
收稿日期:2014-02-18
【13】I. V. Minin and O. V. Minin, Comput. Opt. 22, 99 (2001) (in Russian).
【12】I. V. Minin and O. V. Minin, Optoelectronics, Instrumentation and Data Processing 40, 3 (2004).
Igor Minin, Oleg Minin, "3D dif fractive lenses to overcome the 3D Abbe subwavelength dif fraction limit," Chinese Optics Letters 12(6), 060014 (2014)
增补资料
【3】V. Pacheco-Pea, M. Beruete, I. V. Minin, O. V. Minin. Multifrequency focusing and wide angular scanning of terajets. Optics Letters, 2015, 40(2): 245
The innovative radiating structures as a conical millimeter wave FZP lens are proposed for subwavelength focusing. The results of FDTD simulation and experimental verification are discussed. It has been shown that in contrast to the flat diffractive optics the curvilinear 3D diffractive conical optics is capable of overcoming 3D Abbe barrier with a focal distance F greater than 2. The focal intensity distribution for such type of lenses is not circularly symmetric and thus the focal spot in the high numerical aperture case is no longer an Airy pattern. These results may find useful applications in optical microscopes, including "reverse-microscope", nondestructive testing, microoptics, and nanooptics.
【17】W.-G. Kim, J. P. Thakur, and Y. H. Kim, Microwave Opt. Tech. Lettnol. 52, 1221 (2010).
【4】I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, in Proceedings of Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics 170 (2006).
【16】RemCOM User''s Guide,
CrossRef返回数据
录取日期:2014-04-23
【8】V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O''Faolain, and A. A. Kovalev, Appl. Opt. 52, 330 (2013).
接洽人作者:接洽作者(prof.minin@gmail.com)
【14】M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1986).
【5】I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, in Proceedings of EMTS 2007 (2007).
【1】Hai Huy Nguyen Pham, Shintaro Hisatake, Oleg Vladilenovich Minin, Tadao Nagatsuma, Igor Vladilenovich Minin. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. APL Photonics, 2017, 2(5): 056106
DOI:10.3788/col201412.060014
【10】I. V. Minin and O. V. Minin, Chin. Opt. Lett. 2, 435 (2004).
【6】I. V. Minin, O. V. Minin, N. Gagnon, and A. Petosa, Comput. Opt. 30, 282 (2006).
【11】H. D. Hristov, L. P. Kamburov, J. R. Urumov, and R Feick, IEEE T. Antenn. Propag. 54, 2692 (2006).
网络出书日期:2014-05-30
【3】K. B. Rajesh and P. M. Anbarasan, Chin. Opt. Lett. 6, 785 (2008).
,舆情网,中国舆情网相关文章: